for the 2D experiment. The separation of the CSA powder patterns in a 2D spectrum removes the overlap that is often severe in the one-dimensional spectrum of a static sample, revealing the useful CSA information.

17-O-Acetyltestosterone Formation from Progesterone in Microsomes from Pig Testes: Evidence for the Baeyer-Villiger Rearrangement in Androgen Formation Catalyzed by CYP17

Amy Y. Mak and David C. Swinney*

Department of Drug Metabolism, A3-295 Syntex Research, 3401 Hillview Avenue Palo Alto, California 94304 Received July 7, 1992

Androgens are formed by testicular cytochrome P450 CYP17¹ via an initial 17α -hydroxylation of progesterone (P) or pregnenolone followed by the cleavage of the C-17 side chain.² Although the cleavage reaction observed in testes has been shown to utilize NADPH and molecular oxygen,³ a definitive mechanism for the reaction has evaded investigators. In this communication we report the NADPH-dependent formation of 17-O-acetyltestosterone (AT) upon incubation of P with microsomes and purified CYP17 from perinatal pig testes. The formation of AT suggests that this enzyme has the capacity to catalyze the Baeyer-Villiger rearrangement via a ferric heme peroxy substrate intermediate.

The formation of AT, 17α -hydroxyprogesterone (17α -OHP), and androstenedione (A) was analyzed by HPLC with a radio-flow detector. The products were eluted from a 5- μ m ODS column isocratically with 30% methanol, 25% acetonitrile, and 45% water at a flow rate of 1 mL/min.⁴ AT was identified by comigration with authentic standard (retention time 73 min) and confirmed by GCMS. Under electron impact ionization (70 eV; source temperature 150 °C), the parent compound had a molecular weight of m/z 330 with a major fragment corresponding to the loss of acetate (M⁺/-60). No ion corresponding to the loss of water (M⁺/-18) was observed.

In microsomes the formation rate of AT was 1 pmol/min/mg of protein as compared to 305 and 45 pmol/min/mg for 17α -OHP and A, respectively, while the activity associated with the purified enzyme was 1.6, 447, and 326 pmol/min/nmol of P450 for AT, 17α -OHP, and A, respectively, under the conditions described in ref 4. AT formation was NADPH-dependent in both systems.

If AT is formed by CYP17, then it and 17α -OHP should arise from the same CYP17-progesterone complex and their rates of formation should be equally sensitive to competitive inhibitors. Ketoconazole, a well-characterized competitive inhibitor of CYP17.⁵ and pregnenolone, the cosubstrate for the reaction, did

Figure 1. Inhibition of CYP17 activities in microsomes from pig testes by ketoconazole. The effect of ketoconazole upon the formation of AT (Δ) and 17 α -OHP (O) was determined in 10-min incubations at 37 °C containing 1.5 mg/mL of protein and 50 μ M [³H]progesterone.

Figure 2. Proposed mechanism in the formation of 17-O-acetyltestosterone via the Baeyer-Villiger rearrangement.

not differentially inhibit the formation of either product. The IC₅₀ values, associated with ketoconazole inhibition were 1.60 ± 0.74 and $2.27 \pm 0.20 \,\mu$ M, respectively, for AT and 17α -OHP (Figure 1),⁶ and the apparent K_i values associated with pregnenolone inhibition (determined by the method of Dixon) were $5.0 \pm 3.5 \,\mu$ M for AT and $9.6 \pm 4.6 \,\mu$ M for 17α -OHP. The formation of both products by purified CYP17 was inhibited 48 and 51% by $5 \,\mu$ M ketoconazole, respectively. These data strongly suggest that AT is formed from the same enzyme-substrate complex as 17α -OHP.

The insertion of an oxygen in a carbon-carbon bond is most readily accomplished via rearrangement of a peroxy intermediate. This well-characterized chemical reaction is known as the Baeyer-Villiger rearrangement.⁷ The rearrangement of the C-20 ferric peroxide of progesterone via the Baeyer-Villiger rearrangement would result in the formation of AT (Figure 2). Precedent for this type of reaction being catalyzed by a cytochrome P450 was recently shown in a report by Fisher and co-workers.⁸ They reported evidence that lanosterol 14 α -demethylase catalyzes the formation of 14 α -(formyloxy)lanost-8-en-3 β -ol from lanosterol and concluded that this could only arise via the Baeyer-Villiger rearrangement.

Since AT has not yet been shown to be an intermediate in A formation from P, it does not directly implicate this mechanism in androgen formation by CYP17. It is possible that this is a process that occurs infrequently (leakage). Reports in the literature, primarily by Akhtar and co-workers,⁹ propose the in-

^{*}Author to whom correspondence should be addressed.

⁽¹⁾ CYP17 has been referred to as $17\alpha/20$ lyase, P450_{17a}, and P450_{SCC11}. (2) (a) Nakajin, S.; Hall, P. F. J. Biol. Chem. 1981, 256, 3871–2876. (b) Nakajin, S.; Shinoda, M.; Haniu, M.; Shively, J. E.; Hall, P. F. J. Biol. Chem. 1984, 259, 3971–3976.

⁽³⁾ Lynn, W. S.; Brown, R. H. J. Biol. Chem. 1958, 232, 1015–1030. (4) The microsomal incubations typically contained 1.5 mg/mL of microsomal protein from pig testes, $55 \ \mu\text{M}$ [³H]progesterone, $50 \ \text{mM}$ potassium phosphate (pH 7.25), 3 mM magnesium chloride, and 1 mM NADPH. The incubations with the reconstituted system contained 0.22 μ M CYP17, 5000 units/mL cytochrome P450 reductase, and 5 μ g/mL dilauroylphosphatidyl-choline. CYP17, purified by the method of Suhara (Suhara, K.; Yoshiyuki, F.; Shiroi, M.; Katagiri, M. J. Biol. Chem. 1984, 256, 8729–8736), produced a single band by SDS gel electrophoresis. Cytochrome P450 reductase was purified by the methods of Dignam and Strobel (Dignam, J. D.; Strobel, H. W. Biochem. Biophys. Res. Commun. 1975, 63, 845–852) and Yasukochi and Master (Yasukochi, Y.; Masters, B. S. S. J. Biol. Chem. 1976, 251, 5337–5344).

 ^{(5) (}a) Van Wauwe, J. P.; Janssen, P. A. J. Med. Chem. 1989, 32, 2231-2239.
 (b) Ayab, M.; Levell, M. J. J. Steroid Biochem. 1987, 28, 521-531.
 (c) Kan, P. B.; Hirst, M. A.; Feldman, D. J. Steroid Biochem. 1985, 23, 1023-1029.

⁽⁶⁾ IC_{50} values are the mean \pm standard deviation from the separate experiments. Each IC_{50} value was determined by the best fit to the following equation: % of control activity = $100(1 - (S/S + IC_{50}))$. All r values were greater than 0.97.

⁽⁷⁾ March, J. In Advanced Organic Chemistry Reactions, Mechanisms, and Structure; McGraw Hill Inc.: New York, 1991; 1011-1012 and references therein.

⁽⁸⁾ Fisher, R. T.; Trzaskos, J. M.; Magolda, R. L.; Ko, S. S.; Brosz, C. S.; Larsen, B. J. Biol. Chem. 1991, 266, 6124-6132.

volvement of a peroxy intermediate in C-17 side-chain cleavage; however, rearrangement to androgen via the Baeyer-Villiger reaction was not considered an option. We feel that, in light of the above finding, this rearrangement must be considered a viable option. It is consistent with the studies of Akhtar in which ¹⁸O was incorporated into acetate and is also consistent with the formation of the Δ^{16} steroids, which are formed by loss of the 17 β side chain and the 16α -hydrogen.⁹

Acknowledgment. The authors thank Stanley Murakami for the mass spectral analysis, On-Yee So for purification of CYP17, Dan Combs for statistical analysis, and Diana Cromosini for her assistance in preparing the manuscript.

(9) (a) Stevenson, D. E.; Wright, J. N.; Akhtar, M. J. Chem. Soc., Perkin Trans. 1 1991, 2043-2052. (b) Miller, S. L.; Wright, J. N.; Corina, D. L.; Akhtar, M. J. Chem. Soc., Chem. Commun. 1991, 157-159.

Salt-Induced, Ligand-Controlled, Intra- vs Intermolecular Electron Transfer in a Fulvalene-Bridged **Organoiron Diradical**

Marie-Hélène Delville, Marc Lacoste, and Didier Astruc*

Laboratoire de Chimie Organique et Organométallique, URA CNRS No. 35 Université Bordeaux I, 351, cours de la Libération 33405, Talence Cédex, France Received May 28, 1992

We report that a Na⁺ salt induces intramolecular electron transfer (ET) between the two iron redox centers of the fulvalene-bridged diradical 1 upon ligand exchange and that this ET can be switched to intermolecular ET by controlling the donicity of the incoming ligand. This special salt effect¹ is shown here to bear a synthetic potential in transition metal chemistry due to the facility of these elements to change their redox states.²⁻⁴

The reaction of the bis 19-electron complex $[Fe_{2}^{I}(\mu_{2},\eta^{10} Fv(\eta^{6}-C_{6}H_{6})_{2}$] (1)⁵ (Fv = fulvalene)⁶ at -20 °C with 1 atm of

(1) (a) Loupy, A.; Tchoubar, B. Effets de Sels en Chimie Organique et Organométallique; Dunod: Paris, 1988. (b) Smid, J. In Ions and Ion Pairs in Organic Reactions; Swartz, M., Ed.; Wiley: New York, 1972; Vol. 1, Chapter 3. (c) Mechanisms and Theory in Organic Chemistry, 2nd ed.; Lowry, T. H., Richardson, K. H., Eds.; Harper and Row: New York, 1981; Lowry, 1. H., Richardson, K. H., Eds., Halpel and Row. New York, 1981;
 p 320. (d) The Organic Chemistry of Electrolyte Solutions; Gordon, J. E., Ed.; Wiley: New York, 1975. (e) Harris, J. M. Prog. Phys. Org. Chem. 1974, 11, 89. (f) Loupy, A.; Tchoubar, B.; Astruc, D. Chem. Rev. 1992, 92, 1141.
 (2) (a) Kochi, J. K. Organometallic Mechanism and Catalysis; Academic Press: New York, 1978. (b) Kochi, J. K. J. Organomet. Chem. 1986, 300, 139. (c) Kochi, J. K. In Paramagnetic Organometallic Species in Activation, Selectivity, Catalysis; Chanon, M., Julliard, M., Poite, J.-C., Eds.; Kluwer: Dordrecht, 1988; pp 149–170. (d) Kochi, J. K. J. Organomet. Chem. Libr.
 1990, 22, 201. (e) Kochi, J. K. Adv. Organomet. Chem. 1991, 33, 291.
 (3) (a) Tyler, D. R. Prog. Inorg. Chem. 1988, 35, 125. (b) Stiegman, A.
 E.; Tyler, D. R. Comments Inorg. Chem. 1986, 5, 215. (c) Stiegman, A. E.;

Tyler, D. R. Coord. Chem. Rev. 1985, 63, 217. (d) Tyler, D. R.; Philbin, C.;

Iyler, D. R. Coord. Chem. Rev. 1985, 63, 217. (d) Tyler, D. R.; Philbin, C.;
Fei, M. In Paramagnetic Organometallic Species in Activation, Selectivity, Catalysis; Chanon, M., Julliard, M., Poite, J.-C., Eds.; Kluwer: Dordrecht, 1988; pp 201-210. (e) Tyler, D. R. J. Organomet. Chem. Libr. 1990, 22, 338.
(4) (a) Geiger, W. E. Prog. Inorg. Chem. 1985, 33, 275. (b) Geiger, W.
E.; Connelly, N. G. Adv. Organomet. Chem. 1985, 24, 87. (c) Geiger, W.
E. J. Organomet. Chem. Libr. 1990, 22, 142. (d) Holloway, J. D. L.; Geiger,
W. E. J. Am. Chem. Soc. 1979, 101, 2038.
(5) (a) Desbois, M.-H.; Astruc, D.; Guillin, J.; Mariot, J.-P.; Varret, F.
J. Am. Chem. Soc. 1985, 107, 52. (b) Desbois, M.-H.; Astruc, D.; Guillin, J.; Varret, F.; Trautwein, A. X.; Villeneuve, G. J. Am. Chem. Soc. 1989, 111.

; Varret, F.; Trautwein, A. X.; Villeneuve, G. J. Am. Chem. Soc. 1989, 111, 5800. (c) Astruc, D. Acc. Chem. Res. 1986, 19, 377. (d) Astruc, D.; Hamon, J.-R.; Lacoste, M.; Desbois, M.-H.; Madonik, A. M.; Roman, E. In Organometallic Syntheses; King, R. B., Ed.; Elsevier: New York, 1988; Vol. 4, pp 172-187.

4, pp 1/2-187.
(6) (a) For Fv chemistry, see: McGovern, P. A.; Vollhardt, K. P. C. Synlett 1990, 493 (review). (b) Vollhardt, K. P. C.; Weidman, T. W. J. Am. Chem. Soc. 1983, 105, 1676; Organometallics 1984, 3, 82. (c) Moulton, R.; Weidman, T. W.; Vollhardt, K. P. C.; Bard, A. J. Inorg. Chem. 1986, 25, 1846. (d) Drage, J. S.; Tilset, M.; Vollhardt, K. P. C.; Weidman, T. W. Organometallics 1984, 3, 82. (e) Kahn, A. P.; Newman, D. A.; Vollhardt, K. P. C. J. Synlett 1990, 141. (f) Boese, R.; Myrabo, R. L.; Newman, T. A.: Vollhardt, K. P. C. J. Synlett 1990, 141. (f) Boese, R.; Myrabo, R. L.; Newman, D. (g) 20, 549. (g) A.; Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1990, 29, 549. Huffman, M. A.; Newman, D. A.; Tilset, M.; Tolman, W. B.; Vollhardt, K. P. C. Organometallics 1996, 5, 1056 P. C. Organometallics 1986, 5, 1926.

Scheme I

CO in THF in the absence of $Na^+PF_6^-$ leads as expected to the replacement of both benzene ligands by six CO's, giving the slightly unstable new red diamagnetic complex 27 which indicates elec-